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1. The model

One of the main problems facing compactifications of higher-dimensional theories down to

four dimensions, is the stabilization of all the moduli of the compactification. In the context

of string theory, a possible solution to this problem has been proposed recently where

classical effects, such as fluxes, combine with non-perturbative effects to give a potential

for all the moduli in a supersymmetric AdS vacuum [1]. By adding supersymmetry breaking

effects, it was argued that the cosmological constant could also be lifted to a small positive

value, realizing the necessary starting point for phenomenological applications.

The purpose of this note is to study a mechanism of moduli stabilization similar to [1],

where perturbative and fully calculable corrections stabilize all the moduli of the compact-

ification. The model in question is the supersymmetric Randall-Sundrum (RS) scenario

with detuned brane tensions [2 – 5]. In the minimal scenario the bosonic part of the action

contains, beside the graviton, a U(1) gauge field BM called the graviphoton. In the 4D

effective theory the radion is accompanied by an axion arising from the fifth component of

the graviphoton field, and together they form the complex scalar of a 4D chiral multiplet.

Already at the classical level the radion has a potential with mass proportional to the 4D

curvature. The axion partner on the other hand remains a flat direction of the potential as

a consequence of the higher dimensional gauge invariance. It was however noticed in [7, 6]

that supersymmetry would be broken spontaneously by a non-zero vacuum expectation

value (VEV) of the graviphoton modulus. This is due to the fact that the graviphoton

gauges a U(1) R−symmetry of the 5D action, under which the gravitino is charged. The

gauging violates explicitly the shift symmetry of B5 and upon compactification contributes

to the gravitino bilinears which in turn break supersymmetry by shifting the masses of the

fermionic Kaluza-Klein (KK) tower.
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With broken supersymmetry, the potential is modified by radiative corrections and

the flat directions are lifted, because the fermion and boson contributions do not cancel

exactly.1 In principle the effective potential could be found by brute force, by comput-

ing the Coleman-Weinberg-like potential obtained by integrating out the full KK tower

of modes. This computation is highly unwieldy mostly because the 4D ground state is

curved and the masses of the modes are not known in closed form (see [9]). An interesting

feature however is that, since the supersymmetry breaking effect is non-local in the extra-

dimension, the final result is guaranteed to be finite and calculable, despite the appearance

of divergences at each KK level. In this paper we will follow a different path and rely on

the power of supersymmetry to derive the effective potential. Since the superpotential is

not renormalized perturbatively all that is needed is the correction to the Kähler function.

As we will argue this allows an enormous simplification because it is sufficient to compute

the correction in the limit where the 4D ground state is flat and supersymmetry is pre-

served. As expected, a potential for the graviphoton modulus is generated. The correction

to the potential is negative with pure gravity in the bulk, so that unbroken supersymmetry

corresponds to a global maximum of the potential while the minimum of the potential

corresponds to maximal supersymmetry breaking. Nevertheless, because the ground state

is AdS, unbroken supersymmetry remains a stable point of the potential. With the addi-

tion of hyper-multiplets in the bulk, the correction can become positive, so that unbroken

supersymmetry is the minimum of the potential.

While we focus on a specific model we would like to emphasize that the mechanism

presented in this paper could be generic in supersymmetric compactifications. In any su-

persymmetric model where the ground state is AdS space, half of the moduli have mass

simply because the scalars in a chiral multiplet have different masses (split by the curvature

of the space). Very generically in a supersymmetric compactification the imaginary com-

ponents of the chiral fields are axions arising from the form-fields of the higher dimensional

theory. The axions are flat directions at tree level due to the shift symmetry inherited from

the gauge invariance of the theory. If the flat direction breaks supersymmetry as in the

case considered in this paper, the masses of all the moduli will be lifted. The examples that

we have in mind are gauged supergravities where the shift symmetry of the axions arising

from the gauge fields is violated by the gauging. In this type of models, without invoking

non-perturbative contributions, one expects that in an AdS supersymmetric vacuum all the

moduli will acquire a mass proportional to the four dimensional curvature. If the minimum

of the potential can be lifted without affecting significantly the stabilization (which might

not be generic), this would lead to a very peculiar spectrum of masses where half of the

scalars have mass at least a loop-factor smaller than the one of the scalar partner.

2. Gravitational multiplet

The 4D low energy effective theory for the supersymmetric RS model with general brane

tensions was computed in [6], at the classical level. The low energy dynamics is described

1This mechanism is similar to the one considered in [8] in flat space with the important difference that

the supersymmetry breaking parameter is a dynamical variable.
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by an N = 1 supersymmetric sigma-model coupled to supergravity, with the following

Kähler potential and superpotential,

K(T , T̄ ) = −3M2
4 log

(

1 − e−kπ(T +T̄ )
)

W (T ) =
√

1 − e−2kπr0

M2
4

L

(

1 − eiφeπkr0e−3πkT
)

, (2.1)

to leading order in the 4D curvature (see discussion below). Here T is the radion superfield,

whose scalar component is r + ib, where r is the radion and b is the zero mode of B5. The

parameterization of K and W is chosen so that the minimum of the potential is located

at r = r0, and L is the radius of the 4D AdS ground state while k is the curvature of the

bulk AdS5.

An interesting feature of the low energy effective action (2.1), is that it is entirely

determined by the shift symmetry of b up to the phase φ which can be set to zero without

loss of generality (it amounts to changing the origin of b) [6]. Since the bosonic part of

the action is invariant under the shift of B5, there is no potential for b at tree level.2 This

condition, together with the fact that the ground state is AdS, fixes the form of K and W as

in (2.1). Even though there is no potential for b at tree level, the physics does depend on its

VEV, because the shift symmetry is violated in the fermionic sector by the superpotential.

In particular, computing the covariant derivative DT W , one can see that supersymmetry

is broken unless b = 2n/(3k). All this has a beautiful explanation in terms of the dual CFT

description of the model [10] (see also [11]). From the holographic point of view, the radion

is the Goldstone boson for the spontaneous breaking of conformal invariance. In fact the

Kähler potential and superpotential are dictated by conformal invariance.3 The constant

piece in W arises due to the explicit breaking of conformal invariance in the ultraviolet

which also induces the coupling to 4D gravity. It is very useful to consider the physics of b in

the CFT picture. The photon gauges a U(1) subgroup of the R−symmetry which is broken

by the boundary conditions. According to the AdS/CFT dictionary, gauge symmetries on

the AdS side are dual to global symmetries of the CFT, so b is the Goldstone boson for the

breaking of the U(1) R−symmetry of the CFT. Being a Goldstone boson there cannot be

any potential. The constant term in the superpotential however breaks the R−symmetry

and therefore a potential is generated at one loop.

Let us now turn to the explicit computation of the quantum effects. To any order in

perturbation theory the superpotential is not renormalized and is given by the tree-level

result above. Since the fermionic part of the action does not respect the shift symmetry of

b, at one loop there will be corrections to K which do not respect the structure of eq. (2.1)

and generate a potential for b. The effective action is an expansion in derivatives and in

powers of the curvature 1/L2. As explained in detail in [6], working consistently to two

derivatives requires that we also work to leading order in 1/L2, because terms such as

Rn are not included. This observation simplifies the computation enormously. Since the

2This symmetry is indeed violated by the Chern-Simons term but this is irrelevant in perturbation

theory.
3The only potential for the radion compatible with conformal invariance is φ4 which is precisely what

follows (in the rigid limit and upon canonical normalization) from the exponential term in W .
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superpotential is already of order 1/L, it follows that to work to two derivatives we just

need to compute the Kähler potential to zero order in 1/L. What this means is that to

calculate the one loop potential, all we need is the correction to the Kähler potential in the

supersymmetric RS model with tuned brane tensions. In fact, the very same arguments

could be used for any theory with unbroken supersymmetry in AdS background.

In the flat supersymmetric limit the shift of b becomes an exact symmetry so that

K is a function of T + T̄ . The correction can be derived from the remarkably simple

formula [11],

∆Ωgravity =
∑

n

∫

d4p

(2π)4
2

p2
log(p2 + m2

n) (2.2)

where the sum runs over the masses of the KK tower and Ω = Ωtree + ∆Ω is related to

the Kähler potential by K = −3M2
4 log[k Ω/(3M3

5 )] where M5 is the 5D Planck mass (we

follow the normalizations in [6]). Using dimensional regularization one finds,

∆Ωgravity = −2
Γ(1 − d/2)

(4π)d/2

∑

n

md−2
n , (2.3)

for the gravity multiplet. The finite, radion dependent contribution arising from the

sum (2.3) can then be rewritten as [12, 13],

∆Ωgravity =
k2a2

π

4π2

∫ ∞

0
dy y log

(

1 −
I1(yaπ)K1(y)

K1(yaπ)I1(y)

)

,

a2
π = e−kπ(T +T̄ ) . (2.4)

The above result is exact at one loop for any value of the bulk curvature k. The

formulas simplify when the warping is large so we focus on this case. In this limit one

obtains [11, 13],

K = −3M2
4 log

[

(1 + α) − (1 + β)e−kπ(T +T̄ ) + γe−2kπ(T +T̄ ) + · · ·
]

, (2.5)

where the dots stand for higher terms in the exponential expansion. The last term is the

finite calculable contribution obtained from (2.4). The precise numerical coefficient is given

by,

γ = −
cG k2

12π2M2
4

, (2.6)

where cG = 1
2

∫ ∞
0 dxx3 K1(x)

I1(x) ≈ 1.165. In this formula we have used the relation M2
4 =

M3
5 /k which is valid to leading order in the exponential expansion. This term does not

respect the tree level structure of K so as we will show it gives rise to a b dependent

potential.

The parameters α and β parameterize renormalizations of tree-level terms. Unlike γ

they do not generate a b-dependent potential. If we are only interested in the b dependent

correction to the potential, we could just ignore the corrections α and β which will only

enter at two-loops. Still, it is instructive to consider these divergent parameters. As shown

in [11], α and β correspond to divergent brane terms generated radiatively on the ultraviolet
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(UV ) and infrared (IR) branes respectively. In particular, the brane terms contain the

Ricci scalar, which has a non-zero VEV in AdS, and therefore contributes to the effective

brane tensions. Hence α corresponds to a correction of the UV brane tension. Since the

detuning of the UV brane compared to the bulk cosmological constant determines the 4D

curvature 1/L (we use the parameterization of [6]), a non-zero α modifies the value of L.

Indeed, from the point of view of the 4D theory, a non-zero α in (2.5) changes the overall

scale of the potential, and therefore shifts the value of the 4D curvature 1/L with respect

to the 4D Planck scale. Similarly, β corrects the IR brane tension, which determines the

radius. Thus the only effect of the divergent parameters α and β is to modify the radius

and curvature of the 4D theory.

From the discussion above it follows that α and β should be fixed by matching to

the 5D theory. Consider the contribution of some KK supermultiplet to the vacuum

energy. With unbroken supersymmetry the contribution vanishes identically. Therefore, a

natural matching condition is that the one-loop correction to the potential vanishes when

supersymmetry is unbroken,

∆V (r, b) = 0 for r, b such that DT W = 0 , (2.7)

where ∆V is the one-loop correction to the potential obtained from the Kähler poten-

tial (2.5) and superpotential (2.1) through the standard supergravity formula,

V = e
K

M2
4

(

KT T̄ DT WDT̄ W̄ −
3

M2
4

WW̄

)

. (2.8)

The second condition that we require is that the value of the radion at the minimum does

not change when supersymmetry is unbroken. These two conditions determine,

α = γ e−4kπr0 ,

β = 2γ e−2kπr0 . (2.9)

to leading order in e−2kπr0.

Given K and W we can now compute the potential from (2.8). In the large warping

limit we find,

δV = −
cG

4π2

(e−2kπr0k)2

L2

[

3 − 4 e−2πk(r−r0) + e−4πk(r−r0) (2.10)

− 4 e−5πk(r−r0) + 4 e−6πk(r−r0) + 8 e−5πk(r−r0) sin2

(

3

2
πkb

)

]

.

Using the fact that the mass of the first KK mode is roughly πke−kπr0 , one can write

the b-dependent piece in the more suggestive form,

δV = −
2cG

π4

m2
KK

L2
e−2πkr0 sin2

(

3kπb

2

)

, (2.11)

with mKK ≡ πke−kπr0 . This is essentially the result that one would guess from effec-

tive field theory considerations alone. Since the supersymmetry breaking scale obtained
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from (2.1) is proportional to 1/L and the low energy effective theory is cut-off at the KK

scale mKK, the correction computed within the effective theory must be proportional to

m2
KK/L2. The extra suppression is related to the fact that the supersymmetry breaking

parameter is suppressed in comparison to 1/L. This can be seen from (2.1) because even

for maximal supersymmetry breaking the shift of the gravitino mass is only,

δm 3

2

≈
e−2kπr0

L
. (2.12)

The correction (2.10) is always negative, so the supersymmetric vacuum b = 0 is a

maximum of the potential. The global minimum corresponds to maximal supersymmetry

breaking. At the supersymmetric stable point the mass of b is given by,

m2
b = −

3cG

2π4

1

L2

m2
KK

M2
4

. (2.13)

Even though b = 0 is a maximum of the potential, it remains a stable point by virtue of the

fact that the ground state is AdS. In other words, radiative corrections cannot destabilize

the supersymmetric vacuum. In fact supersymmetry automatically guarantees that all the

masses are above the stability bound for the scalars in AdS4, m2 ≥ −9/(4L2). The radion

mass is also corrected as,

m2
r =

4

L2
−

5cG

2π4

1

L2

m2
KK

M2
4

. (2.14)

Together the masses of the scalars correspond to a supersymmetric multiplet labeled by

the Casimir,

E =
3

L2
−

cG

2π4

1

L2

m2
KK

M2
4

. (2.15)

3. Vector and hyper multiplets

In the presence of vector and hyper multiplets in the bulk there will be additional correc-

tions to the quantum potential. While the contribution of vector multiplets is expected

to have the same sign as the gravity multiplet, hyper-multiplets should give the opposite

sign. To see this, recall that from the five-dimensional point of view, the physics of these

corrections is the following: the action in flat space is invariant when B5 shifts by a con-

stant. The AdS theory is obtained by gauging a U(1) subgroup of the SU(2) R−symmetry.

This breaks explicitly the shift symmetry so one expects perturbative corrections to the

potential for B5. The fields transforming under the R−symmetry are the gravitinos, the

gauginos, and the hyper-scalars. Since a VEV of B5 shifts the fermion masses for the

gravity and vector multiplets, and the boson masses for the hypers, they will contribute

with opposite sign.

The full supersymmetric 5D action coupled to branes has not yet been constructed.

Still, as in the gravity case, we can circumvent this obstruction by computing the correction

to the Kähler potential since this can be obtained in the tuned limit and depends only on

the KK spectrum. The formula (2.4) generalizes to,

∆Ω = N
k2a2

π

8π2

∫ ∞

0
dy y log Z(y) (3.1)

– 6 –
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where N is the number of vector multiplets NV , or minus the number of hypermultiplets

NH respectively. Z(y) is a function whose zeros on the positive imaginary axis are the

masses of the KK particles which is given respectively by [14],

Z(y)hyper = 1 −
I|c+1/2|(yaπ)K|c+1/2|(y)

K|c+1/2|(yaπ)I|c+1/2|(y)

Z(y)vector = 1 −
I0(yaπ)K0(y)

K0(yaπ)I0(y)
. (3.2)

The contribution of the hyper-multiplets depends on the parameter c which is related to

the bulk mass. Since for any c the KK reduction of a hyper-multiplet always produces a

massless chiral multiplet and a tower with masses starting at πke−kπr0, the hyper-multiplets

do not decouple for large mass. What depends on c is instead the localization of the zero

mode. Expanding the result in the limit of large warping one finds,

∆Ωhyper = NH
cH

8π2
k2e−(|c+ 1

2
|+1) kπ(T +T̄ ) , (3.3)

with the numerical coefficient given by

cH =
21−|2c+1|

Γ(|c + 1
2 |)Γ(1 + |c + 1

2 |)

∫ ∞

0
dy y2|c+ 1

2
|+1 K|c+1/2|(y)

I|c+1/2|(y)
.

Note that the functional dependence of the correction to Ω depends on c, that is on the lo-

calization of the zero mode. For the special value c = 1/2, the “conformal hypermultiplet”,

the contribution is minus a half the one of gravity. The potential for NH such multiplets

is then,

δV =

(

NH

2
− 1

)

2cG

π4

m2
KK

L2
e−2πkr0 sin2

(

3kπb

2

)

. (3.4)

For NH > 2 the correction is positive and the unbroken supersymmetry point b = 0

becomes the minimum of the potential.

For completeness the result for the vector multiplet is given by,

∆Ωvector = −NV
cV

8π2

k

π(T + T̄ )
e−kπ(T +T̄ ) , (3.5)

with the numerical coefficient cV =
∫ ∞
0 dxxK0(x)/I0(x) ≈ .631.

4. Outlook

In this brief note we computed the one loop effective potential for the radion superfield in

the supersymmetric detuned RS model. At tree level, the zero mode of B5 is an exactly flat

direction of the potential, with supersymmetry spontaneously broken for b 6= 0. The scalar

partner of b, the radion, is already stabilized at tree level. Due to supersymmetry breaking

effects, b develops a periodic potential at one-loop. This potential is finite because the

supersymmetry breaking effect is non-local and therefore does not depend on the ultraviolet

completion of the theory. We derived the correction to the potential using the powerful

supersymmetric approach which only requires to compute the correction to the Kähler

potential in the tuned limit of the model.

– 7 –
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The model analyzed in this paper shares some of the basic features of the flux com-

pactifications of string theory which have attracted a lot of attention recently, starting

with [1]. In these constructions one considers a compactification of 10D supergravity on

a Calabi-Yau manifold to four dimensions. By adding fluxes, branes and including non-

perturbative effects, it is possible to stabilize all the moduli of the theory. The ground

state is then a supersymmetric AdS background with the masses of the volume modulus

proportional to the curvature of AdS space. The strategy for constructing semi-realistic

models is then to start with a vacuum with large negative cosmological constant, and add

supersymmetry-breaking effects such as anti-D branes that lift the vacuum energy to a

tiny positive value as required by observations. Under the assumption that this last step

does not jeopardize the stabilization of the scalars, one finally obtains a compactification

with all the moduli stabilized and small positive cosmological constant.

Let us now cast our results in light of the discussion of the previous paragraph. The

stabilization of the radial modulus is similar to the one in [1]. In fact the superpotential

responsible for the stabilization of the radion has the same form as the one in [1] but while

in our case this superpotential is induced at the classical level, in [1] it is a non-perturbative

effect.4 Due to the fact that the ground state is AdS, the masses of the scalars within the

same multiplet are different. This guarantees that in any AdS compactification at least

half of the moduli will have a potential (of course with the caveat that in AdS the masses

of the scalars could be negative). The main difference in the detuned RS case is that one

of the scalars is massless at tree level but as we have seen it acquires a mass radiatively.

It would be interesting then to build a toy model of flux compactification based on the

detuned RS model which would allow to test the consistency of the construction in a simple

model.

In some of the examples we considered (with several hypermultiplets), the 4D curvature

is reduced by the Casimir energy so one might hope to find a vacuum with zero cosmological

constant. However, since the energy of the supersymmetric vacuum is not modified by the

Casimir contribution, the new supersymmetry-breaking vaccum is necessarily a maximum

of the potential. This new vaccum can only be stable if the space is AdS, namely, if the

net 4d cosmological constant is still negative, albeit with smaller magnitude. Furthermore,

because the Casimir energy is a non-local effect, its contribution is suppressed.5 Therefore

one needs to add new ingredients to the model in order to lift the vacuum to a stable

Minkowski space.

Finally let us mention that the computation presented in this paper may be of interest

from the point of view of the AdS/CFT correspondence. We computed a finite loop effect in

a weakly coupled gravity theory with AdS4 background. This corresponds to a subleading

1/N effect in the dual large N three dimensional conformal field theory. It would be

interesting to understand our results from the point of view of the corresponding 3D field

theory.

4Note however that the Kähler potentials are different at least in the large warping limit.
5This suppression could naively be compensated by the addition of a large number of hypermultiplets,

but the loop expansion breaks down then. Alternatively, the Casimir energy might have a significant effect

in the small warping limit [15].
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